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Abstra
tIn this paper, we present a family of adaptive proto
ols,
alled SPIN (Sensor Proto
ols for Information via Negotia-tion), that eÆ
iently disseminates information among sen-sors in an energy-
onstrained wireless sensor network. Nodesrunning a SPIN 
ommuni
ation proto
ol name their data us-ing high-level data des
riptors, 
alled meta-data. They usemeta-data negotiations to eliminate the transmission of re-dundant data throughout the network. In addition, SPINnodes 
an base their 
ommuni
ation de
isions both uponappli
ation-spe
i�
 knowledge of the data and upon knowl-edge of the resour
es that are available to them. This allowsthe sensors to eÆ
iently distribute data given a limited en-ergy supply. We simulate and analyze the performan
e oftwo spe
i�
 SPIN proto
ols, 
omparing them to other pos-sible approa
hes and a theoreti
ally optimal proto
ol. We�nd that the SPIN proto
ols 
an deliver 60% more data for agiven amount of energy than 
onventional approa
hes. Wealso �nd that, in terms of dissemination rate and energyusage, the SPIN proto
ols perform 
lose to the theoreti
aloptimum.1 Introdu
tionWireless networks of sensors are likely to be widely deployedin the future be
ause they greatly extend our ability to mon-itor and 
ontrol the physi
al environment from remote lo-
ations. Su
h networks 
an greatly improve the a

ura
y ofinformation obtained via 
ollaboration among sensor nodesand online information pro
essing at those nodes.Wireless sensor networks improve sensing a

ura
y byproviding distributed pro
essing of vast quantities of sensinginformation (e.g., seismi
 data, a
ousti
 data, high-resolutionimages, et
.). When networked, sensors 
an aggregate su
hdata to provide a ri
h, multi-dimensional view of the en-vironment. In addition, networked sensors 
an fo
us theirattention on 
riti
al events pointed out by other sensors inthe network (e.g., an intruder entering a building). Finally,networked sensors 
an 
ontinue to fun
tion a

urately in thefa
e of failure of individual sensors; for example, if some sen-Fifth ACM/IEEE MOBICOM Conferen
e, Seattle, WA,August 1999.

sors in a network lose a pie
e of 
ru
ial information, othersensors may 
ome to the res
ue by providing the missingdata.Wireless sensor networks 
an also improve remote a

essto sensor data by providing sink nodes that 
onne
t them toother networks, su
h as the Internet, using wide-area wire-less links. If the sensors share their observations and pro
essthese observations so that meaningful and useful informationis available at the sink nodes, users 
an retrieve informationfrom the sink nodes to monitor and 
ontrol the environmentfrom afar.We therefore envision a future in whi
h 
olle
tions ofsensor nodes form ad ho
 distributed pro
essing networksthat produ
e easily a

essible and high-quality informationabout the physi
al environment. Ea
h sensor node operatesautonomously with no 
entral point of 
ontrol in the net-work, and ea
h node bases its de
isions on its mission, theinformation it 
urrently has, and its knowledge of its 
om-puting, 
ommuni
ation and energy resour
es. Compared totoday's isolated sensors, tomorrow's networked sensors havethe potential to perform their responsibilities with more a
-
ura
y, robustness and sophisti
ation.Several obsta
les need to be over
ome before this vision
an be
ome a reality. These obsta
les arise from the limitedenergy, 
omputational power, and 
ommuni
ation resour
esavailable to the sensors in the network.� Energy: Be
ause networked sensors 
an use up theirlimited supply of energy simply performing 
omputa-tions and transmitting information in a wireless en-vironment, energy-
onserving forms of 
ommuni
ationand 
omputation are essential.� Computation: Sensors have limited 
omputing powerand therefore may not be able to run sophisti
ated net-work proto
ols.� Communi
ation: The bandwidth of the wireless links
onne
ting sensor nodes is often limited, on the or-der of a few hundred Kbps, further 
onstraining inter-sensor 
ommuni
ation.In this paper, we present SPIN (Sensor Proto
ols for In-formation via Negotiation), a family of negotiation-based in-formation dissemination proto
ols suitable for wireless sen-sor networks. We fo
us on the eÆ
ient dissemination ofindividual sensor observations to all the sensors in a net-work, treating all sensors as potential sink nodes. There areseveral bene�ts to solving this problem. First, it will giveus a way of repli
ating 
omplete views of the environment1
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Figure 1: The implosion problem. In this graph, node Astarts by 
ooding its data to all of its neighbors. Two 
opiesof the data eventually arrive at node D. The system wastesenergy and bandwidth in one unne
essary send and re
eive.a
ross the entire network to enhan
e the fault-toleran
e ofthe system. Se
ond, it will give us a way of disseminatinga 
riti
al pie
e of information (e.g., that intrusion has beendete
ted in a surveillan
e network) to all the nodes.The design of SPIN grew out of our analysis of the dif-ferent strengths and limitations of 
onventional proto
olsfor disseminating data in a sensor network. Su
h proto
ols,whi
h we 
hara
terize as 
lassi
 
ooding, start with a sour
enode sending its data to all of its neighbors. Upon re
eivinga pie
e of data, ea
h node then stores and sends a 
opy of thedata to all of its neighbors. This is therefore a straightfor-ward proto
ol requiring no proto
ol state at any node, andit disseminates data qui
kly in a network where bandwidthis not s
ar
e and links are not loss-prone.Three de�
ien
ies of this simple approa
h render it in-adequate as a proto
ol for sensor networks:� Implosion: In 
lassi
 
ooding, a node always sendsdata to its neighbors, regardless of whether or not theneighbor has already re
eived the data from anothersour
e. This leads to the implosion problem, illus-trated in Figure 1. Here, node A starts out by 
ood-ing data to its two neighbors, B and C. These nodesstore the data from A and send a 
opy of it on totheir neighbor D. The proto
ol thus wastes resour
esby sending two 
opies of the data to D. It is easy tosee that implosion is linear in the degree of any node.� Overlap: Sensor nodes often 
over overlapping geo-graphi
 areas, and nodes often gather overlapping pie
esof sensor data. Figure 2 illustrates what happens whentwo nodes (A and B) gather su
h overlapping data andthen 
ood the data to their 
ommon neighbor (C).Again, the algorithm wastes energy and bandwidthsending two 
opies of a pie
e of data to the same node.Overlap is a harder problem to solve than the implo-sion problem|implosion is a fun
tion only of networktopology, whereas overlap is a fun
tion of both topol-ogy and the mapping of observed data to sensor nodes.� Resour
e blindness: In 
lassi
 
ooding, nodes do notmodify their a
tivities based on the amount of energyavailable to them at a given time. A network of em-bedded sensors 
an be \resour
e-aware" and adapt its
ommuni
ation and 
omputation to the state of its en-ergy resour
es.
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Figure 2: The overlap problem. Two sensors 
over an over-lapping geographi
 region. When these sensors 
ood theirdata to node C, C re
eives two 
opies of the data marked r.The SPIN family of proto
ols in
orporates two key in-novations that over
ome these de�
ien
ies: negotiation andresour
e-adaptation.To over
ome the problems of implosion and overlap, SPINnodes negotiate with ea
h other before transmitting data.Negotiation helps ensure that only useful information willbe transferred. To negotiate su

essfully, however, nodesmust be able to des
ribe or name the data they observe.We refer to the des
riptors used in SPIN negotiations asmeta-data.In SPIN, nodes poll their resour
es before data transmis-sion. Ea
h sensor node has its own resour
e manager thatkeeps tra
k of resour
e 
onsumption; appli
ations probe themanager before transmitting or pro
essing data. This allowssensors to 
ut ba
k on 
ertain a
tivities when energy is low,e.g., by being more prudent in forwarding third-party data.Together, these features over
ome the three de�
ien
iesof 
lassi
 
ooding. The negotiation pro
ess that pre
edes a
-tual data transmission eliminates implosion be
ause it elim-inates transmission of redundant data messages. The useof meta-data des
riptors eliminates the possibility of over-lap be
ause it allows nodes to name the portion of the datathat they are interested in obtaining. Being aware of lo-
al energy resour
es allows sensors to 
ut ba
k on a
tivitieswhenever their energy resour
es are low, thereby extendinglongevity.To assess the eÆ
ien
y of information dissemination viaSPIN, we perform a simulation-based study of �ve dissemi-nation proto
ols. Two of the proto
ols are SPIN proto
ols(whi
h we 
all SPIN-1 and SPIN-2); these are the experi-mental proto
ols in our study. The other three proto
olsfun
tion as 
omparison proto
ols: (i) 
ooding, whi
h weoutlined above; (ii) gossiping, a variant on 
ooding thatsends messages to random sets of neighboring nodes; and(iii) ideal, an idealized routing proto
ol that assumes per-fe
t knowledge and has the best possible performan
e.We evaluate these proto
ols by measuring both the amountof data they disseminate over time and the amount of energythey dissipate. The SPIN proto
ols disseminate informationwith low laten
y and 
onserve energy at the same time. Ourresults highlight the advantages of using meta-data to namedata and negotiate data transmissions. SPIN-1 uses negoti-ation to solve the implosion and overlap problems; it redu
esenergy 
onsumption by a fa
tor of 3.5 
ompared to 
ood-ing, while disseminating data almost as qui
kly as theoret-i
ally possible. SPIN-2, whi
h additionally in
orporates a2
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threshold-based resour
e-awareness me
hanism in additionto negotiation, disseminates 60% more data per unit en-ergy than 
ooding and in fa
t 
omes very 
lose to the idealamount of data that 
an be disseminated per unit energy.2 SPIN: Sensor Proto
ol for Information via NegotiationThe SPIN family of proto
ols rests upon two basi
 ideas.First, to operate eÆ
iently and to 
onserve energy, sensorappli
ations need to 
ommuni
ate with ea
h other aboutthe data that they already have and the data they still needto obtain. Ex
hanging sensor data may be an expensivenetwork operation, but ex
hanging data about sensor dataneed not be. Se
ond, nodes in a network must monitor andadapt to 
hanges in their own energy resour
es to extendthe operating lifetime of the system.Our design of the SPIN proto
ols is motivated in part bythe prin
iple of Appli
ation Level Framing (ALF) [4℄. WithALF, network proto
ols must 
hoose transmission units thatare meaningful to appli
ations, i.e., pa
ketization is bestdone in terms of Appli
ation Data Units (ADUs). One of theimportant 
omponents of ALF-based proto
ols is the 
om-mon data naming between the transmission proto
ol andappli
ation (e.g., [20℄), whi
h we follow in the design of ourmeta-data. We take ALF-like ideas one step further by argu-ing that routing de
isions are also best made in appli
ation-
ontrolled and appli
ation-spe
i�
 ways, using knowledge ofnot just network topology but appli
ation data layout andthe state of resour
es at ea
h node. We believe that su
hintegrated approa
hes to naming and routing are attra
tiveto a large range of network situations, espe
ially in mobileand wireless networks of devi
es and sensors.This se
tion presents the individual elements that makeup the SPIN family of proto
ols and presents two SPIN pro-to
ols that we have designed, SPIN-1 and SPIN-2.2.1 Meta-DataSensors use meta-data to su

in
tly and 
ompletely des
ribethe data that they 
olle
t. If x is the meta-data des
riptorfor sensor data X, then the size of x in bytes must be shorterthan the size of X, for SPIN to be bene�
ial. If two pie
esof a
tual data are distinguishable, then their 
orrespondingmeta-data should be distinguishable. Likewise, two pie
esof indistinguishable data should share the same meta-datarepresentation.SPIN does not spe
ify a format for meta-data; this for-mat is appli
ation-spe
i�
. Sensors that 
over disjoint ge-ographi
 regions may simply use their own unique IDs asmeta-data. The meta-data x would then stand for \all thedata gathered by sensor x". A 
amera sensor, in 
ontrast,might use (x; y; �) as meta-data, where (x; y) is a geographi

oordinate and � is an orientation. Be
ause ea
h appli
a-tion's meta-data format may be di�erent, SPIN relies onea
h appli
ation to interpret and synthesize its own meta-data. There are 
osts asso
iated with the storage, retrieval,and general management of meta-data, but the bene�t ofhaving a su

in
t representation for large data messages inSPIN far outweighs these 
osts.2.2 SPIN MessagesSPIN nodes use three types of messages to 
ommuni
ate:� ADV { new data advertisement. When a SPIN nodehas data to share, it 
an advertise this fa
t by trans-mitting an ADV message 
ontaining meta-data.

� REQ { request for data. A SPIN node sends an REQmessage when it wishes to re
eive some a
tual data.� DATA { data message. DATAmessages 
ontain a
tualsensor data with a meta-data header.Be
ause ADV and REQ messages 
ontain only meta-data, they are smaller, and 
heaper to send and re
eive,than their 
orresponding DATA messages.2.3 SPIN Resour
e ManagementSPIN appli
ations are resour
e-aware and resour
e-adaptive.They 
an poll their system resour
es to �nd out how mu
henergy is available to them. They 
an also 
al
ulate the 
ost,in terms of energy, of performing 
omputations and sendingand re
eiving data over the network. With this informa-tion, SPIN nodes 
an make informed de
isions about usingtheir resour
es e�e
tively. SPIN does not spe
ify a parti
-ular energy management poli
y for its proto
ols. Rather,it spe
i�es an interfa
e that appli
ations 
an use to probetheir available resour
es.2.4 SPIN ImplementationSPIN is an appli
ation-level approa
h to network 
ommu-ni
ation. We therefore intend to implement SPIN as mid-dleware appli
ation libraries with a well de�ned API. Theselibraries will implement the basi
 SPIN message types, mes-sage handling routines, and resour
e-management fun
tions.Sensor appli
ations 
an then use these libraries to 
onstru
ttheir own SPIN proto
ols.2.5 SPIN-1: A 3-Stage Handshake Proto
olThe SPIN-1 proto
ol is a simple handshake proto
ol fordisseminating data through a lossless network. It worksin three stages (ADV-REQ-DATA), with ea
h stage 
orre-sponding to one of the messages des
ribed above. The pro-to
ol starts when a node obtains new data that it is willingto disseminate. It does this by sending an ADV message toits neighbors, naming the new data (ADV stage). Upon re-
eiving an ADV, the neighboring node 
he
ks to see whetherit has already re
eived or requested the advertised data. Ifnot, it responds by sending an REQ message for the missingdata ba
k to the sender (REQ stage). The proto
ol 
om-pletes when the initiator of the proto
ol responds to theREQ with a DATA message, 
ontaining the missing data(DATA stage).Figure 3 shows an example of the proto
ol. Upon re-
eiving an ADV pa
ket from node A, node B 
he
ks to seewhether it possesses all of the advertised data (a). If not,node B sends an REQ message ba
k to A, listing all of thedata that it would like to a
quire (b). When node A re
eivesthe REQ pa
ket, it retrieves the requested data and sendsit ba
k to node B as a DATA message (
). Node B, in turn,sends ADV messages advertising the new data it re
eivedfrom node A to all of its neighbors (d). It does not send anadvertisement ba
k to node A, be
ause it knows that node Aalready has the data. These nodes then send advertisementsof the new data to all of their neighbors, and the proto
ol
ontinues.There are several important things to note about thisexample. First, if node B had its own data, it 
ould aggre-gate this with the data of node A and send advertisementsof the aggregated data to all of its neighbors (d). Se
ond,nodes are not required to respond to every message in the3
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ol. Node A starts by advertis-ing its data to node B (a). Node B responds by sending arequest to node A (b). After re
eiving the requested data(
), node B then sends out advertisements to its neighbors(d), who in turn send requests ba
k to B (e,f).proto
ol. In this example, one neighbor does not send anREQ pa
ket ba
k to node B (e). This would o

ur if thatnode already possessed the data being advertised.Though this proto
ol has been designed for lossless net-works, it 
an easily be adapted to work in lossy or mobilenetworks. Here, nodes 
ould 
ompensate for lost ADV mes-sages by re-advertising these messages periodi
ally. Nodes
an 
ompensate for lost REQ and DATA messages by re-requesting data items that do not arrive within a �xed timeperiod. For mobile networks, 
hanges in the lo
al topology
an trigger updates to a node's neighbor list. If a node no-ti
es that its neighbor list has 
hanged, it 
an spontaneouslyre-advertise all of its data.This proto
ol's strength is its simpli
ity. Ea
h node inthe network performs little de
ision making when it re
eivesnew data, and therefore wastes little energy in 
omputa-tion. Furthermore, ea
h node only needs to know aboutits single-hop network neighbors. The fa
t that no othertopology information is required to run the algorithm hassome important 
onsequen
es. First, SPIN-1 
an be runin a 
ompletely un
on�gured network with a small, startup
ost to determine nearest neighbors. Se
ond, if the topologyof the network 
hanges frequently, these 
hanges only haveto travel one hop before the nodes 
an 
ontinue running thealgorithm.2.6 SPIN-2: SPIN-1 with a Low-Energy ThresholdThe SPIN-2 proto
ol adds a simple energy-
onservation heuris-ti
 to the SPIN-1 proto
ol. When energy is plentiful, SPIN-2 nodes 
ommuni
ate using the same 3-stage proto
ol asSPIN-1 nodes. When a SPIN-2 node observes that its en-ergy is approa
hing a low-energy threshold, it adapts by re-du
ing its parti
ipation in the proto
ol. In general, a nodewill only parti
ipate in a stage of the proto
ol if it believes

that it 
an 
omplete all the other stages of the proto
ol with-out going below the low-energy threshold. This 
onservativeapproa
h implies that if a node re
eives some new data, itonly initiates the three-stage proto
ol if it believes it hasenough energy to parti
ipate in the full proto
ol with all ofits neighbors. Similarly, if a node re
eives an advertisement,it does not send out a request if it does not have enough en-ergy to transmit the request and re
eive the 
orrespondingdata. This approa
h does not prevent a node from re
eiving,and therefore expending energy on, ADV or REQ messagesbelow its low-energy threshold. It does, however, preventthe node from ever handling a DATA message below thisthreshold.3 Other Data Dissemination AlgorithmsIn this se
tion, we des
ribe the three dissemination algo-rithms against whi
h we will 
ompare the performan
e ofSPIN.3.1 Classi
 FloodingIn 
lassi
 
ooding, a node wishing to disseminate a pie
e ofdata a
ross the network starts by sending a 
opy of this datato all of its neighbors. Whenever a node re
eives new data,it makes 
opies of the data and sends the data to all of itsneighbors, ex
ept the node from whi
h it just re
eived thedata. The amount of time it takes a group of nodes to re
eivesome data and then forward that data on to their neighborsis 
alled a round. The algorithm �nishes, or 
onverges, whenall the nodes in the network have re
eived a 
opy of the data.Flooding 
onverges in O(d) rounds, where d is the diameterof the network, be
ause it takes at most d rounds for a pie
eof data to travel from one end of the network to the other.Although 
ooding exhibits the same appealing simpli
-ity as SPIN-1, it does not solve either the implosion or theoverlap problem.3.2 GossipingGossiping [9℄ is an alternative to the 
lassi
 
ooding ap-proa
h that uses randomization to 
onserve energy. Insteadof indis
riminately forwarding data to all its neighbors, agossiping node only forwards data on to one randomly se-le
ted neighbor. If a gossiping node re
eives data from agiven neighbor, it 
an forward data ba
k to that neighbor ifit randomly sele
ts that neighbor. Figure 4 illustrates thereason that gossiping nodes forward data ba
k to the sender.If node D never forwarded the data ba
k to node B, node Cwould never re
eive the data.Whenever data travels to a node with high degree ina 
lassi
 
ooding network, more 
opies of the data start
oating around the network. At some point, however, these
opies may end up imploding. Gossiping avoids su
h implo-sion be
ause it only makes one 
opy of ea
h message at anynode. The fewer 
opies made, the lower the likelihood thatany of these 
opies will ever implode.While gossiping distributes information slowly, it dissi-pates energy at a slow rate as well. Consider the 
ase wherea single data sour
e disseminates data using gossiping. Sin
ethe sour
e sends to only one of its neighbors, and that neigh-bor sends to only one of its neighbors, the fastest rate atwhi
h gossiping distributes data is 1 node/round. Thus, ifthere are 
 data sour
es in the network, gossiping's fastestpossible distribution rate is 
 nodes/round.4
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Figure 5: Ideal dissemination of observed data a and 
. Ea
hnode in the �gure is marked with its initial data, and boxednumbers represent the order in whi
h data is disseminated inthe network. In ideal dissemination, both implosion, 
ausedby B and C's 
ommon neighbor, and overlap, 
aused by Aand C's overlapping initial data item, 
, do not o

ur.Finally, we note that, although gossiping largely avoidsimplosion, it does not solve the overlap problem.3.3 Ideal DisseminationFigure 5 depi
ts an example network where every node sendsobserved data along a shortest-path route and every nodere
eives ea
h pie
e of distin
t data only on
e. We 
all thisideal dissemination be
ause observed data a and 
 arrive atea
h node in the shortest possible amount of time. No en-ergy is ever wasted transmitting and re
eiving useless data.Current networking solutions o�er several possible ap-proa
hes for dissemination using shortest-paths. One su
happroa
h is network-level multi
ast, su
h as IP multi
ast[5℄. In this approa
h, the nodes in the network build andmaintain distributed sour
e-spe
i�
 shortest-path trees andthemselves a
t as multi
ast routers. To disseminate a newpie
e of data to all the other nodes in the network, a sour
ewould send the data to the network multi
ast group, thus en-

suring that the data would rea
h all of the parti
ipants alongshortest-path routes. In order to handle losses, the dissemi-nation proto
ol would be modi�ed to use reliable multi
ast.Unfortunately, multi
ast and parti
ularly reliable multi
astboth rely upon 
ompli
ated proto
ol ma
hinery, mu
h ofwhi
h may be unne
essary for solving the spe
i�
 problemof data dissemination in a sensor network. In many respe
ts,SPIN may in fa
t be viewed as a form of appli
ation-levelmulti
asting, where information about both the topologyand data layout are in
orporated into the distributed mul-ti
ast trees.Sin
e most existing approa
hes to shortest-path distri-bution trees would have to be modi�ed to a
hieve ideal dis-semination, we will 
on
entrate on 
omparing SPIN to theresults of an ideal dissemination proto
ol, rather than itsimplementation. It turns out that we 
an simulate the re-sults of an ideal dissemination proto
ol using a modi�edversion of SPIN-1. We arrive at this simulation approa
h bynoti
ing that if we tra
e the message history of the SPIN-1proto
ol in a network, the DATA messages in the networkwould mat
h the history of an ideal dissemination proto
ol.Therefore, to simulate an ideal dissemination proto
ol, werun the SPIN-1 proto
ol and eliminate any time and energy
osts that ADV and REQ messages in
ur.4 Sensor Network SimulationsIn order to 
ompare the di�erent 
ommuni
ation approa
hesdis
ussed in the previous se
tions, we developed a sensornetwork simulator by extending the fun
tionality of the nssoftware pa
kage. Using this simulation framework, we 
om-pared SPIN-1 and SPIN-2 with 
lassi
 
ooding and gossip-ing and the ideal data distribution proto
ol. We found thatSPIN-1 provides higher throughput than gossiping and thesame order of throughput as 
ooding, while at the sametime uses substantially less energy than both these proto-
ols. SPIN-2 is able to deliver even more data per unitenergy than SPIN-1 and 
lose to the ideal amount of dataper unit energy by adapting to the limited energy of thenetwork. We found that in all of our simulations, nodeswith a higher degree tended to dissipate more energy thannodes with a lower degree, 
reating potential weak points ina battery-operated network.4.1 ns Implementationns [15℄ is an event-driven network simulator with exten-sive support for simulation of TCP, routing, and multi
astproto
ols. To implement the SPIN family of data distribu-tion proto
ols, we added several features to the ns simula-tor. The ns Node 
lass was extended to 
reate a Resour
e-Adaptive Node, as shown in Figure 6. The major 
ompo-nents of a Resour
e-Adaptive Node are the Resour
es, theResour
e Manager, the Resour
e-Constrained Appli
ation(RCAppli
ation), the Resour
e-Constrained Agent (RCA-gent) and the Network Interfa
e. The Resour
e Managerprovides a 
ommon interfa
e between the appli
ation andthe individual resour
es. The RCAppli
ation, a sub
lass ofns's Appli
ation 
lass, is responsible for updating the statusof the node's resour
es through the Resour
e Manager. Inaddition, the RCAppli
ation implements the SPIN 
ommu-ni
ation proto
ol and the resour
e-adaptive de
ision-makingalgorithms. The RCAgent pa
ketizes the data generated bythe RCAppli
ation and sends the pa
kets to the Node's Net-work Interfa
e for transmission to one of the node's neigh-bors.5
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ommuni
ating neighbors.4.2 Simulation TestbedFor our experiments, we 
reated the 25-node network shownin Figure 7. This network, whi
h was randomly generatedwith the 
onstraint that the graph be fully 
onne
ted, has59 edges, a degree of 4.7, a hop diameter of 8, and an av-erage shortest path of 3.2 hops. The power of the sensorradio transmitter is set so that any node within a 10 meterradius is within 
ommuni
ation range and is 
alled a neigh-bor of the sensor. The radio speed (1 Mbps) and the powerdissipation (600 mW in transmit mode, 200 mW in re
eivemode) were 
hosen based on data from 
urrently availableradios. The pro
essing delay for transmitting a message israndomly 
hosen between 5 ms and 10 ms1. We initializedea
h node with 3 data items, 
hosen randomly from a setof 25 possible data items. This means there is overlap inthe initial data of di�erent sensors, as often o

urs in sensornetworks. The size of ea
h data item was set to 500 bytes,and we gave ea
h item a distin
t, 16 byte, meta-data name.Our test network assumes no network losses and no queuingdelays. Table 1 summarizes these network 
hara
teristi
s.Using this network 
on�guration, we ran ea
h proto
oland tra
ked its progress in terms of the rate of data distri-bution and energy usage. For ea
h experiment, we ran theproto
ols 10 times and averaged the data distribution timesand energy usage to a

ount for the random pro
essing de-lay. The results of these experiments are presented in thefollowing se
tions.1Note that these simulations do not a

ount for any delay 
ausedby a

essing, 
omparing, and managing meta-data.

Nodes 25Edges 59Average degree 4.7 neighborsDiameter 8 hopsAverage shortest path 3.2 hopsAntenna rea
h 10 mRadio propagation delay 3x108 m/sPro
essing delay 5-10 msRadio speed 1 MbpsTransmit 
ost 600 mWRe
eive 
ost 200 mWData size 500 bytesMeta-data size 16 bytesNetwork losses NoneQueuing delays NoneTable 1: Chara
teristi
s of the 25-node wireless test net-work.4.3 Unlimited Energy SimulationsFor the �rst experiment, we gave all the nodes a virtuallyin�nite supply of energy and ran ea
h data distribution pro-to
ol until it 
onverged. Sin
e energy is not limited, SPIN-1and SPIN-2 are identi
al proto
ols. Therefore, the results inthis se
tion only 
ompare SPIN-1 with 
ooding, gossiping,and the ideal data distribution proto
ol.4.3.1 Data A
quired Over TimeFigure 8 shows the amount of data a
quired by the networkover time for ea
h of the proto
ols. These graphs 
learlyshow that gossiping has the slowest rate of 
onvergen
e.However, it is interesting to note that using gossiping, thesystem has a
quired over 85% of the total data in a smallamount of time; the majority of the time is spent distribut-ing the last 15% of the data to the nodes. This is be
ause agossiping node sends all of the data it has to a randomly 
ho-sen neighbor. As the nodes obtain a large amount of data,this transmission will be 
ostly, and, sin
e it is very likelythat the neighbor already has a large proportion of the datawhi
h is being transmitted, it will also be very wasteful. Agossiping proto
ol whi
h kept some per-neighbor state, su
has having ea
h node keep tra
k of the data it has alreadysent to ea
h of its neighbors, would perform mu
h better byredu
ing the amount of wasteful transmissions.Figure 8 shows that SPIN-1 takes 80 ms longer to 
on-verge than 
ooding, whereas 
ooding takes only 10 ms longerto 
onverge than ideal. Although it appears that SPIN-1 performs mu
h worse than 
ooding in 
onvergen
e time,this in
rease is a
tually a 
onstant amount, regardless of thelength of the simulation. Thus for longer simulations, thein
rease in 
onvergen
e time for the SPIN-1 proto
ol will benegligible. The reasons for this behavior will be dis
ussedin detail in Se
tion 4.5.Our experimental results showed that the data distribu-tion 
urves were 
onvex for all four proto
ols. We thereforespe
ulated that these 
urves might generally be 
onvex, re-gardless of the network topology. If we 
ould predi
t theshape of these 
urves, we might be able to gain some intu-ition about the behavior of the proto
ols for di�erent net-work topologies. To do this, we noted that the amount ofdata re
eived by a node i at ea
h round d depends only onthe number of neighbors d hops away from this node, ni(d).6
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ent of total data a
quired in the system overtime for ea
h proto
ol. (a) shows the entire time s
ale untilall the proto
ols 
onverge. (b) shows a blow-up of the �rst0.22 se
onds.However, sin
e ni(d) is di�erent for ea
h node i and ea
hdistan
e d and is entirely dependent on the spe
i�
 topol-ogy, we found that, in fa
t, no general 
on
lusions 
an bedrawn about the shape of these 
urves.4.3.2 Energy Dissipated Over TimeFor the previous experiment, we also measured the energydissipated by the network over time, as shown in Figure 9.These graphs show that gossiping again is the most 
ostlyproto
ol; it requires mu
h more energy than the other twoproto
ols to a

omplish the same task. As stated before,adding a small amount of state to the gossiping proto
olwill dramati
ally redu
e the total system energy usage.Figure 9 also shows that SPIN-1 uses approximately afa
tor of 3.5 less energy than 
ooding. Thus, by sa
ri�
-ing a small, 
onstant o�set in 
onvergen
e time, SPIN-1a
hieves a dramati
 redu
tion in system energy. SPIN-1is able to a
hieve this large redu
tion in energy sin
e thereis no wasted transmission of the large 500-byte data items.We 
an see this advantage of the SPIN-1 proto
ol by
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Figure 9: Total amount of energy dissipated in the systemfor ea
h proto
ol. (a) shows the entire time s
ale until allthe proto
ols 
onverge. (b) shows a blow-up of the �rst 0.22se
onds.looking at the message pro�les for the di�erent proto
ols,shown in Figure 10. The �rst three bars for ea
h proto
olshow the number of data items transmitted throughout thenetwork, the number of these data items that are redundantand thus represent wasteful transmission, and the numberof data items that are useful. The number of useful datatransmissions is the same for ea
h proto
ol sin
e the datadistribution is 
omplete on
e every node has all the data.The last three bars for ea
h proto
ol show the number ofmeta-data items transmitted and the number of these itemsthat are redundant and useful. These bars have a heightzero for ideal, 
ooding, and gossiping, sin
e these proto
olsdo not use meta-data transmissions. Note that the numberof useful meta-data transmissions for the SPIN-1 proto
ol isthree times the number of useful data transmissions, sin
eea
h data transmission in the SPIN-1 proto
ol requires threemessages with meta-data.Flooding and gossiping nodes send out many more dataitems than SPIN-1 nodes. Furthermore, 77% of these dataitems are redundant for 
ooding and 96% of the data itemsare redundant for gossiping, and these redundant messages7
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Figure 11: Energy dissipation versus node degree.
ome at the high 
ost of 500 bytes ea
h. SPIN-1 nodesalso send out a large number of redundant messages (53%);however, these redundant messages are meta-data messages.Meta-data messages 
ome at a relatively low 
ost and 
omewith an important bene�t: meta-data negotiation keeps SPIN-1 nodes from sending out even a single redundant data-item.We plotted the average energy dissipated for ea
h nodeof a 
ertain degree, as shown in Figure 11. This �gure showsthat for all the proto
ols, the energy dissipated at ea
h nodedepends upon its degree. The reper
ussions of this �ndingis that if a high-degree node happens to lie upon a 
riti-
al path in the network, it may die out before other nodesand partition the network. We believe that handling su
hsituations is an important area for improvement in all fourproto
ols.The key results from these unlimited energy simulationsare summarized in Table 2.4.4 Limited Energy SimulationsFor this experiment, we limited the total energy in the sys-tem to 1.6 Joules to determine how e�e
tively ea
h proto
oluses its available energy. Figure 12 shows the data a
qui-

Performan
e Proto
ol�Relative to Ideal SPIN-1 Flooding GossipingIn
rease in Energy 0.45 J 6.3 J 44.1 JDissipation�In
rease in 90 ms 10 ms 3025 msConvergen
e Time�Slope of Energy 1.25x 5x 25xDissipation vs.Node DegreeCorrelation Line�% of Total Data 0 77% 96%Messages that areRedundantTable 2: Key results of the unlimited energy simulationsfor the SPIN-1, 
ooding, and gossiping proto
ols 
omparedwith the ideal data distribution proto
ol.sition rate for the SPIN-1, SPIN-2, 
ooding, gossiping, andideal proto
ols. This �gure shows that SPIN-2 puts its avail-able energy to best use and 
omes 
lose to distributing thesame amount of data as the ideal proto
ol. SPIN-2 is ableto distribute 73% of the total data as 
ompared with theideal proto
ol whi
h distributes 85%. We note that SPIN-1 distributes 68%, 
ooding distributes 53%, and gossipingdistributes only 38%.Figure 13 shows the rate of energy dissipation for thisexperiment. This plot shows that 
ooding uses all its energyvery qui
kly, whereas gossiping, SPIN-1, and SPIN-2 usethe energy at a slower rate and thus are able to remainoperational for a longer period of time.Figure 14 shows the number of data items a
quired perunit energy for ea
h of the proto
ols. If the system en-ergy is limited to below 0.2 Joules, none of the proto
olshas enough energy to distribute any data. With 0.2 Joules,the gossiping proto
ol is able to distribute a small amountof data; with 0.5 Joules, the SPIN proto
ols begins to dis-tribute data; and with 1.1 Joules, the 
ooding proto
ol be-gins to distribute the data. This shows that if the energyis very limited, the gossiping proto
ol 
an a

omplish themost data distribution. However, if there is enough energyto get the 
ooding or one of the SPIN proto
ols started,these proto
ols deliver mu
h more data per unit energy thangossiping. This graph also shows the advantage of SPIN-2over SPIN-1, whi
h doesn't base any de
isions on the 
ur-rent level of its resour
es. By making the 
ommuni
ationde
isions based on the 
urrent level of the energy availableto ea
h node, SPIN-2 is able to distribute 10% more dataper unit energy than SPIN-1 and 60% more data per unitenergy than 
ooding.4.5 Best-Case Convergen
e TimesIn many 
ases, we are less 
on
erned with the behavior ofthe proto
ols over time than the overall time at whi
h theproto
ols 
onverge. To study this behavior, we set up a se-ries of experiments where we measured the e�e
ts of variousnetwork parameters on the 
onvergen
e times of the proto-
ols. As with the previous experiments, these experimentsand the ensuing analysis do not a

ount for queuing delaysor network losses and are thus the best-
ase s
enarios forreal networks.Figures 15 - 17 show the 
hange in 
onvergen
e time8



www.manaraa.com

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

T
ot

al
 D

at
a 

(%
)

Total Data Acquired in the Sensor Network

Ideal
SPIN−1
SPIN−2
Flooding
GossipingFigure 12: Per
ent of total data a
quired in the system forea
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ol when the total system energy is limited to 1.6Joules.
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h proto
olwhen the total system energy is limited to 1.6 Joules.for 
ooding, SPIN-1, and ideal as the parameters b (linkbandwidth), d (�xed pro
essing delay), and s (data size)are varied for the s
enarios: (1) ea
h sensor begins with asingle unique data item and (2) ea
h sensor begins with threepie
es of overlapping data. The 
ir
les on the top graphs andthe stars on the bottom graphs denote the 
onditions usedin all our previous experiments (b = 1 Mbps, d = 5 ms, s =500 bytes).The 
onvergen
e time for ideal and 
ooding are the samewhen there is no overlap in the initial data. Note that in thenon-overlapping 
ase, there is no set of parameters that givesSPIN-1 a smaller 
onvergen
e time than 
ooding. However,for the overlapping initial data 
ase, there are 
ross-overs asthe bandwidth of the link and the size of ea
h data item arevaried.To understand these results, we develop equations thatpredi
t the 
onvergen
e time of ea
h of these proto
ols. Forall three proto
ols, the longest path any pie
e of data willneed to traverse is the maximum shortest path of the net-work, or the network diameter, ld. The transmission timeover a single link of bandwidth b bits per se
ond for a data
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Figure 14: Data a
quired for a given amount of energy.SPIN-2 distributes 10% more data per unit energy thanSPIN-1 and 60% more data per unit energy than 
ooding.message of size s bytes is 8s=b. The transmission time forADV and REQ messages is negligible 
ompared with thetransmission time for the DATA messages and will be ig-nored here. In addition, the network imposes a �xed d msand a random [0-r℄ ms pro
essing delay before any message(e.g., ADV, REQ, or DATA) is transmitted. This meansthat the 
onvergen
e time for the ideal and 
ooding proto-
ols are:ld(d+ 8sb ) � CIdeal; CFlood � ld(d+ r + 8sb ) (1)The minimum 
onvergen
e time would o

ur if the randomdelay was always zero and the maximum 
onvergen
e timewould o

ur if the random delay was always the maximumpossible value. A typi
al 
onvergen
e time would be in themiddle of these two bounds.A similar analysis 
an be done for the SPIN-1 proto
ol.On
e again, the longest path any pie
e of data will need totraverse is ld. However, the delay in
urred to get the datafrom one node to the next will be 3(d + r) + 8s=b, sin
eea
h message (ADV, REQ, and DATA) in
urs a pro
essingdelay of (d+r) ms. This means SPIN-1 has the 
onvergen
ebounds:ld(3d+ 8sb ) � CSPIN�1 � ld(3(d+ r) + 8sb ) (2)Therefore, there will always be an o�set of between 2lddand 2ld(d+ r) between the 
onvergen
e time of SPIN-1 and
ooding (or ideal) for the 
ase when there is no overlap inthe initial data of ea
h node and there are no queuing delays;there is no 
hoi
e of network parameters for whi
h SPIN-1will 
onverge before 
ooding for this s
enario. However, thedi�eren
e between 
onvergen
e times will be a 
onstant andthus be negligible for long simulations.The analysis 
hanges slightly for the 
ase where there isoverlap in the initial data and ea
h node begins with k > 1pie
es of data. To begin with, the length of the longestpath whi
h a pie
e of data must traverse in this s
enario isnot ne
essarily the maximum shortest path of the network.Rather, this length llp will depend on the layout of the net-work and the initial distribution of the data. In addition,the size of ea
h data message being transmitted 
an range9
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Figure 15: Convergen
e time as the link bandwidth is variedbetween 100 Kbps and 1 Mbps. The �xed pro
essing delayis set to 5 ms and the data size is set to 500 bytes. (a) Ea
hnode begins with a single pie
e of unique data. (b) Ea
hnode begins with 3 pie
es of non-unique data.from s to ks bytes. For example, initially a node A 
ouldsend all k pie
es of its data to its neighbor B. These messageswill be ks bytes long. However, the k pie
es of data nodeB re
eives from A might not all be new; therefore node Bwill only transmit k�o of these data pie
es to its neighbors,where 0 � o � k is the number of data items that A sent toB whi
h B already had and thus has already transmitted toits neighbors. Therefore, the time to transmit a data mes-sage is between 8s=b and k8s=b, depending on the numberof data items in the message, so the 
onvergen
e bounds for
ooding and ideal be
ome:llp(d+ 8sb ) � C0Ideal; C0Flood � llp(d+ r + k 8sb ) (3)Similarly, the 
onvergen
e bounds for SPIN-1 be
ome:llp(3d+ 8sb ) � C0SPIN�1 � llp(3(d+ r) + k 8sb ) (4)However, SPIN-1 and ideal nodes will be mu
h more likelyto only send a small number of data items, sin
e these nodesnever send wasteful data. Therefore, the 
onvergen
e timefor the SPIN-1 and ideal proto
ols will most often be be-tween the upper and lower bounds, whereas the 
onvergen
etime for 
ooding will most likely be near the upper bound.If the lower bound of 
onvergen
e for SPIN-1 is mu
h lessthan the upper bound of 
onvergen
e for 
ooding, there is anonzero probability that SPIN-1 will 
onverge before 
ood-ing. This o

urs when:llp(3d+ 8sb )� llp(d+ r + k 8sb ) (5)d� (k � 1)4sb + r2This means that when there is a large amount of initialoverlapping data, it is possible for SPIN-1 to 
onverge before
ooding sin
e SPIN-1 will more often send smaller (and less
ostly) data messages than 
ooding.
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Figure 16: Convergen
e time as the �xed portion of thepro
essing delay is varied between 1 ms and 9 ms. The linkbandwidth is set to 1 Mbps and the data size is set to 500bytes. (a) Ea
h node begins with a single pie
e of uniquedata. (b) Ea
h node begins with 3 pie
es of non-uniquedata. Network diameter (hops) ld 8Shortest path for llp 7overlapping initial data (hops)Fixed pro
essing delay (s) d 5x10�3Random pro
essing delay (s) r 5x10�3Number of initial k 3overlapping data itemsData size (bytes) s 500Link bandwidth (bps) b 1e6Table 3: Network parameters used to 
al
ulate 
onvergen
ebounds for 
ooding, SPIN-1, and ideal.In summary, if ea
h node begins with more than onepie
e of non-unique data, it is possible for SPIN-1 to 
on-verge before 
ooding. However, if the initial data is unique,SPIN-1 will never 
onverge before 
ooding2.Our testbed network has the parameters shown in Ta-ble 3. Plugging these parameters into Eqns. 3 and 4 givethe following 
onvergen
e bounds for our network:0:063 � C0Ideal; C0Flood � 0:154 (6)0:133 � C0SPIN�1 � 0:294 (7)The experimental results show that, on average, 
ooding
onverges in 135 ms, SPIN-1 
onverges in 215 ms, and ideal
onverges in 125 ms. Noti
e that the 
ooding 
onvergen
e2If ea
h node begins with k pie
es of data but the data are unique,it is the same as 
onsidering ea
h node starting with one pie
e ofunique data that is k times as large as a single pie
e of data andSPIN-1 will never 
onverge before 
ooding. Similarly, if ea
h nodebegins with one pie
e of non-unique data, there will never be a 
asewhere either proto
ol redu
es the data message size and again SPIN-1will never 
onverge before 
ooding.10
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Figure 17: Convergen
e time as the size of a pie
e of datais varied between 100 bytes and 4000 bytes. The link band-width is set to 1 Mbps and the �xed pro
essing delay is setto 5 ms. (a) Ea
h node begins with a single pie
e of uniquedata. (b) Ea
h node begins with 3 pie
es of non-uniquedata.time is 
lose to the upper bound, whereas the SPIN-1 
on-vergen
e time is in the middle of the two bounds, as agreeswith our intuition that SPIN-1 sends less than k = 3 dataitems per message more often than 
ooding. As stated be-fore, this in
rease in 
onvergen
e time is 
onstant for a giventopology and will be
ome negligible for longer simulations.On
e queuing delays are in
orporated into our networktestbed, the 
onvergen
e time for 
ooding will be worse thanthe 
onvergen
e time for ideal. In addition, we expe
t the
onvergen
e time for 
ooding to be worse than the 
onver-gen
e time for SPIN-1, even in the unique initial data 
ase,due to the extraneous transmissions 
ausing queuing delaysin a 
ooding node that are not a problem in a SPIN-1 node.5 Related WorkPerhaps the most fundamental use of dissemination proto-
ols in networking is in the 
ontext of routing table dissem-ination. For example, nodes in link-state proto
ols (su
h asOSPF [14℄) periodi
ally disseminate their view of the net-work topology to their neighbors, as dis
ussed in [10, 24℄.Su
h proto
ols 
losely mimi
 the 
lassi
 
ooding proto
olwe des
ribed earlier.There are generally two types of topologies used in wire-less networks: 
entralized 
ontrol and peer-to-peer 
ommu-ni
ations [16℄. The latter style is better suited for wirelesssensor networks than the former, given the ad ho
, de
en-tralized nature of su
h networks. Re
ently, mobile ad ho
routing proto
ols have be
ome an a
tive area of resear
h[3, 11, 17, 19, 23℄. While these proto
ols solve importantproblems, they are a di�erent 
lass of problems from theones that arise in wireless sensor networks. In parti
ular, webelieve that sensor networks will bene�t from appli
ation-
ontrolled negotiation-based dissemination proto
ols, su
has SPIN.Routing proto
ols based on minimum-energy routing [12,22℄ and other power-friendly algorithms have been proposed

in the literature [13℄. We believe that su
h proto
ols willbe useful in wireless sensor networks, 
omplementing SPINand enabling better resour
e adaptation. Re
ent advan
esin operating system design [7℄ have made appli
ation-levelapproa
hes to resour
e adaptation, su
h as these, a viablealternative to more traditional approa
hes.Using gossiping and broad
asting algorithms to dissemi-nate information in distributed systems has been extensivelyexplored in the literature, often as epidemi
 algorithms [6℄.In [1, 6℄, gossiping is used to maintain database 
onsisten
y,while in [18℄, gossiping is used as a me
hanism to a
hievefault toleran
e. A theoreti
al analysis of gossiping is pre-sented in [9℄. Re
ently, su
h te
hniques have also been usedfor resour
e dis
overy in networks [8℄.Perhaps 
losest in philosophy to the negotiation-basedapproa
h of SPIN is the popular Network News TransferProto
ol (NNTP) for Usenet news distribution on the Inter-net [2℄. Here, news servers form neighborhoods and dissem-inate new information between ea
h other, using names andtimestamps as meta-data to negotiate data dissemination.We also note that there has been a lot of re
ent interestin using IP multi
ast [5℄ as the underlying infrastru
tureto eÆ
iently and reliably disseminate data from a sour
e tomany re
eivers [21℄ on the Internet. However, for the reasonsdes
ribed in Se
tion 3, we believe that enabling appli
ationsto 
ontrol routing de
isions is a less 
omplex and betterapproa
h for wireless sensor networks.6 Con
lusionsIn this paper, we introdu
ed SPIN (Sensor Proto
ols for In-formation via Negotiation), a family of data disseminationproto
ols for wireless sensor networks. SPIN uses meta-datanegotiation and resour
e-adaptation to over
ome several de-�
ien
ies in traditional dissemination approa
hes. Usingmeta-data names, nodes negotiate with ea
h other aboutthe data they possess. These negotiations ensure that nodesonly transmit data when ne
essary and never waste energyon useless transmissions. Being resour
e-aware, nodes areable to 
ut ba
k on their a
tivities whenever their resour
esare low to in
rease their longevity.We have dis
ussed the details of two spe
i�
 SPIN pro-to
ols, SPIN-1 and SPIN-2. SPIN-1 is a 3-stage handshakeproto
ol for disseminating data, and SPIN-2 is a version ofSPIN-1 that ba
ks o� from 
ommuni
ation at a low-energythreshold. Finally, we 
ompared the SPIN-1 and SPIN-2proto
ols to 
ooding, gossiping, and ideal dissemination pro-to
ols using the ns simulation tool.After examining SPIN in this paper, both qualitativelyand quantitatively, we arrive at the following 
on
lusions:� Naming data using meta-data des
riptors and negoti-ating data transmissions using meta-data su

essfullysolve the implosion and overlap problems des
ribed inSe
tion 1.� SPIN-1 and SPIN-2 are simple proto
ols that eÆ
ientlydisseminate data, while maintaining no per-neighborstate. These proto
ols are well-suited for an environ-ment where the sensors are mobile be
ause they basetheir forwarding de
isions on lo
al neighborhood infor-mation.� In terms of time, SPIN-1 a
hieves 
omparable resultsto 
lassi
 
ooding proto
ols, and in some 
ases outper-forms 
lassi
 
ooding. In terms of energy, SPIN-1 usesonly about 25% as mu
h energy as a 
lassi
 
ooding11
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proto
ol. SPIN-2 is able to distribute 60% more dataper unit energy than 
ooding.� In all of our experiments, SPIN-1 and SPIN-2 outper-formed gossiping. They also 
ome 
lose to an idealdissemination proto
ol in terms of both time and en-ergy under some 
onditions.In summary, SPIN proto
ols hold the promise of a
hiev-ing high performan
e at a low 
ost in terms of 
omplexity,energy, 
omputation, and 
ommuni
ation.Although our initial work and results are promising, thereis still a great deal of work to be done in this area. First andforemost, we would like to study SPIN proto
ols using morerealisti
 wireless models. The loss-prone nature of wireless
hannels needs to be in
orporated and experimented with inour framework, and we believe that this will not be diÆ
ult.Furthermore, SPIN-1 and SPIN-2 are 
urrently targeted fora MAC-layer that does not support wireless broad
ast. Su
hproto
ols, most notably the popular 802.11 MAC-layer pro-to
ol, do exist, and we would like to examine how SPINproto
ols may be improved to take advantage of MAC-levelbroad
ast. Finally, we would like to develop more sophisti-
ated resour
e-adaptation proto
ols to use available energywell. In parti
ular, we are interested in designing proto
olsthat make adaptive de
isions based not only on the 
ostof 
ommuni
ating data, but also the 
ost of synthesizingit. Su
h resour
e-adaptive approa
hes may hold the key tomaking 
ompute-intensive sensor appli
ations a reality inthe future.A
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